美女脱得一干二净|swag aprillady|国产精品91满18|91传媒制片|激情视频免费看|91大神高端约会|黑人巨大精品欧美一区二区r|糖心vlog官网黄|七夕制片厂91|大胸美女巨乳,91制片厂吴语霏,国产精品欧美一区二区久久不卡,乌鲁木齐大象传媒艺考教育

當前位置: 首頁 > 學術報告 > 正文

Environment-Aware Dynamic Constraints for Intelligent Vehicles Subject to Physical Attacks

發(fā)布時間:2023-12-18 08:23:52 發(fā)布人:唐振東  

報告時間:2023年12月19日(周二)上午10:00-12:00

報告地點:船電樓A306會議室

報告摘要: Physical attackers pose significant danger to the operation of intelligent vehicles, especially multiagent systems (MASs). Therefore, how to guarantee safety and performance of MAS in the presence of physical attackers is an important topic to be addressed. State-of-the-art literature on constrained multiagent system operations can only deal with constant or at best time-varying constraint requirements. Such constraint formulations cannot respond well to the dynamic environment and presence of physical attackers. In this work, we consider a formation tracking problem for a group of unmanned aerial vehicles (UAVs) in the presence of a physical attacker. The safety/performance constraint functions are environment-aware and dynamic in nature, whose formulation depends on certain path parameters and presence of the attacker. The dependence on path ensures adaptation to the dynamic operation environment. The dependence on the attacker ensures swift adjustment based on the relative distances between the attacker and agents. UAV desired paths and desired path speeds can also be both path- and attacker-dependent. A framework where composite barrier functions are incorporated with path parameter timing laws has been proposed to address the safety and performance considerations. Adaptive laws and neural networks are used to approximate unknown attacker velocity, unknown system parameters and external disturbances are estimated by adaptive laws. The proposed formation architecture can ensure formation tracking errors converge exponentially to small neighborhoods near the equilibrium, with all constraint requirements met. At the end a simulation study further illustrates the proposed scheme and demonstrates its efficacy.

報告專家簡介: 金旭博士,,美國肯塔基大學助理教授,、博士生導師,。2013年獲得新加坡國立大學電子計算機專業(yè)一等榮譽學士學位,,2015年獲得加拿大多倫多大學電子計算機專業(yè)碩士學位,2018年獲得美國佐治亞理工大學數(shù)學碩士學位,,2019年獲得美國佐治亞理工大學航天工程博士學位,。2019年至今在美國肯塔基大學機械工程系工作,。發(fā)表論文60余篇,引用量3300余次,。獨立主持美國國家自然科學基金(NSF)項目一項,,并多次擔任美國國家自然科學基金委評審專家。另主持美國航空航天局(NASA)州級項目一項,。金博士在各個領域?qū)W科綜合排名的斯坦福全球“2022年度科學影響力排行榜”排名7562,。

船舶電氣工程學院

2023年12月18日